Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the MHD system
نویسندگان
چکیده
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition ∆t ∼ h, we obtain error estimates in L of order O(∆t + h) where m is the degree of the local polynomials.
منابع مشابه
Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations
In this paper, we propose and numerically investigate a family of locally divergence-free central discontinuous Galerkin methods for ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods (SIAM Journal on Numerical Analysis 45 (2007) 2442-2467) for hyperbolic equations, with the use of approximating functions that are exactly dive...
متن کاملCentral discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field
In this paper, central discontinuous Galerkin methods are developed for solving ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods designed for hyperbolic conservation laws on overlapping meshes, and use different discretization for magnetic induction equations. The resulting schemes carry many features of standard central dis...
متن کاملArbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations
Ideal magnetohydrodynamic (MHD) equations consist of a set of nonlinear hyperbolic conservation laws, with a divergence-free constraint on the magnetic field. Neglecting this constraint in the design of computational methods may lead to numerical instability or nonphysical features in solutions. In our recent work (Journal of Computational Physics 230 (2011) 48284847), second and third order ex...
متن کاملProvably Positive Discontinuous Galerkin Methods for Multidimensional Ideal Magnetohydrodynamics
The density and pressure are positive physical quantities in magnetohydrodynamics (MHD). Design of provably positivity-preserving (PP) numerical schemes for ideal compressible MHD is highly desired, but remains a challenge especially in the multi-dimensional cases. In this paper, we develop uniformly high-order discontinuous Galerkin (DG) schemes which provably preserve the positivity of densit...
متن کاملA discontinuous Galerkin method for two-temperature plasmas
We develop a formulation for the single-fluid/two-temperature equations for simulating two-species, compressible, non-equilibrium plasma flows. The divergence-free condition of the magnetic field is enforced via the characteristic decomposition of an extended nine-wave system. The source terms are modified appropriately to improve energy and momentum conservation accuracy. A spectral/hp element...
متن کامل